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Transducers  for optical  sensing  of proteins  are  prepared  using  cluster  beam  deposition  on quartz  sub-
strates.  Surface  plasmon  resonance  phenomenon  of  the  supported  silver  clusters  is  used  for  the  detection.
It  is  shown  that  surface  immobilisation  procedure  providing  adhesion  of the  silver  clusters  to quartz  and
functionalisation  of  cluster  surfaces  for antibody  coupling  are  the key  issues  for  cluster  stability  and
protein  detection.  Focus  was  put  on  these  tasks  and  the  processes  have  been  optimised.  In  particular,
conditions  for coupling  of the  antibodies  to  the  clusters  are  developed  providing  an  enhancement  of
luster beam deposition
etal nanoparticles

ocalised surface plasmon resonance
roteins
ransducers for optical sensing

the  plasmon  absorption  band  used  for the  detection.  Atomic  force  microscopy  study  allows  to  suggest
that  immobilisation  of  antibodies  on  silver  clusters  has  been  achieved,  thus  giving  a possibility  to  incu-
bate  and  detect  an  antigen  of interest.  Hence,  by  applying  the developed  preparation  stages  and  protein
immobilisation  scheme  the  sensing  of  protein  of  interest  can  be  assured  using  a  relatively  simple  optical
spectroscopy  method.

© 2015  Elsevier  B.V.  All  rights  reserved.
. Introduction

Development of nanosensors is a rapidly growing field of
esearch. The increasing interest arises from the unique physi-
al characteristics and properties on the nanoscale that are not
resent in bulk materials. Therefore, nanodevices are able to deliver
ensitivity, which is orders of magnitude higher compared to con-
entional sensor technologies, and supply additional performance
dvantages like short response time and portability [1]. Nanosen-
ors also allow for building integrated systems, thus providing

 platform for intelligent devices having significant data storing,
rocessing and analyzing power. Intelligent nanosensors have a
reat potential to become very attractive as autonomous systems
r to be spread out in a large number to form networks.

Among nanosensors, biorecognition systems are of significant
mportance for environmental, bioprocess and food quality con-
rols as well as for medical and pharmaceutical applications [2,3].

 biosensor is an analytical device that interfaces a biological object
o be recognised with a physical or chemical transducer to generate
 signal which is then registered and analysed. There are a number
f various approaches in realisation of detection [4]. Localised sur-
ace plasmon resonance (LSPR) biosensors were among the first

∗ Corresponding author. Tel.: +45 99409229; fax: +45 99409235.
E-mail address: vp@nano.aau.dk (V.N. Popok).

ttp://dx.doi.org/10.1016/j.snb.2015.01.131
925-4005/© 2015 Elsevier B.V. All rights reserved.
demonstrated and since then they have gradually become a very
powerful label-free tool. One of the great advantages of label-free
detection is that the target molecules are not altered, i.e. they are
detected in their natural forms. Nanoparticles (NPs) are typically
used as transducers generating optical signals. At the same time
they are similar in size to some organic molecules such as enzymes
and proteins, thus, being ideal transducers used in detection. Many
state-of-the-art biosensors utilising LSPR were demonstrated to
provide a relatively high degree of sensitivity [5]. However, there
are still a number of aspects to be considered in order to produce
a reliable and selective sensor. Among them formation of a stable
transducer, design of the detection scheme and surface immobili-
sation chemistry are challenging tasks.

NPs prepared through sol–gel processes starting with different
salt containing solutions are the most widely used as transducers.
A major disadvantage of this approach is the relatively low stability
and short shelf life time of the particles, leading to a rapid decay
of their sensing properties. There is also a poor size selection and
high tendencies to agglomeration of NPs. Additionally, it is hard to
control surface coverage by NPs. Alternatively, NPs deposited from
cluster beams have been demonstrated to be an attractive approach
[6,7]. One of the main advantages of this technique is that the clus-

ters are first formed in a gas phase that provides both a high level
of flexibility and precision in the control of cluster composition and
size. Thereafter, the clusters can be deposited on the required sub-
strate with control of surface coverage. Deposition which is carried

dx.doi.org/10.1016/j.snb.2015.01.131
http://www.sciencedirect.com/science/journal/09254005
http://www.elsevier.com/locate/snb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.snb.2015.01.131&domain=pdf
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ut in vacuum allows avoiding contamination. Moreover, the clus-
er beam technique gives a possibility to control the kinetic energy
f the particles thus providing conditions for pinning of clusters
r nanostructuring of surfaces [8,9], in other words widening the
pectrum of possible applications.

In the current paper, we present first results on the formation
f transducers for protein sensing using deposition of silver clus-
ers on modified quartz surfaces. The research is focused on the
evelopment of the surface immobilisation procedure to provide
easonable adhesion of the silver clusters to quartz, functional-
sation of cluster surfaces for protein coupling and testing the
pplicability of the sensing scheme utilising LSPR.

. Experimental

Silver clusters were produced using the experimental setup
ased on magnetron sputtering which is described in detail in
10,11]. A silver target of 99.99% purity was used for the cluster
roduction. Cluster deposition was carried out on quartz sub-
trates with dimensions 10 mm × 10 mm at room temperature in
igh vacuum at a background pressure of ca. 1 × 10−8 mbar. Thus,
ne produces pure supported silver NPs on the quartz surface.
eposited at low kinetic (so-called thermal) energies NPs preserve
lmost spherical shape with a slight tendency to oblate [10]. The
etup allows for size selection of clusters with a relative standard
eviation of ∼9–13% for particles of various diameters in the range
etween 5 and 23 nm [11]. However, to test the principle of detec-
ion and develop methods for surface immobilisation, the precise
ize of clusters is considered to be not essential for the first experi-
ents. Therefore, silver clusters were deposited without exact size

election in this work. Mean sizes and the size distribution will be
escribed below.

Quartz substrates were modified (functionalised) prior to the
eposition. A series of earlier experiments led us to the elaboration
f the methodology to improve the cluster adhesion to the sub-
trates in relation to stability against dipping in solutions used in
he following steps of transducer formation and protein deposition.
uartz substrates have been cleaned with ethanol and subse-
uently treated for 30 min  in an ozone cleaner to remove residual
rganic materials and to increase the surface density of hydroxyl
roups. Directly after the ozone treatment the samples were placed
n a desiccator and evacuated (subjected to low vacuum) in the
resence of a mixture of toluene/3-aminopropyltrimethoxysilane
APTMS) at a ratio of 3:1. The gas phase deposition was  carried out
or 30 min  to cover the surface with approximately one monolayer
f APTMS. A schematic picture of the quartz surface modification is
hown in Fig. 1. After this surface functionalisation with positively
harged amine groups, the quartz substrates have been used for
luster deposition as described above. The presence of the amine

roups was found to be significantly improving the silver NPs adhe-
ion to the substrate.

Substrates with as-deposited clusters were incubated with a
 mM 11-mercaptoundecanoic acid (11-MUA) solution in ethanol

Fig. 1. Gas phase deposition of APTMS on
Fig. 2. Functionalisation of silver cluster surfaces using 11-MUA.

for 30 min  and subsequently washed with pure ethanol to remove
residual not reacted 11-MUA. The 11-MUA modified substrates
have been dried under a stream of nitrogen. 11-MUA becomes
selectively bound to silver NP by the sulphur-containing end and
provides reaction groups for coupling of proteins (see Fig. 2).
To activate these groups the samples were incubated with a
freshly prepared 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide
hydrochloride/N-hydroxysuccinimide (EDC/NHS) mix  ratio 1:1 for
20 min. Subsequently the mix  has been removed from the sub-
strates and a protein solution has been added on top of the
substrates. The incubation period for protein solutions was 30 min.
After the incubations the samples have been thoroughly rinsed. All
proteins used for the experiments are commercially available and
they have been used without further purification.

Three series of samples were prepared: the first one follows
classical antibody–antigen scheme (with anti-chicken egg albumin
antibody and chicken egg albumin as antigen), the second one is
of inversed sequence of protein deposition (first chicken egg albu-
min, then the corresponding antibody) and the third one is also
inversed scheme but with lysozyme as the antigen, which should
not be recognised by the anti-chicken egg albumin antibody. The
proteins used in this work are chosen only to test the applicabil-
ity of the developing detection approach and they are not of high
practical importance.

The samples were characterised after each of the above-
mentioned steps in preparation of the transducer system using
atomic force microscopy (AFM) and optical transmission spec-
troscopy. For AFM studies, an Ntegra-Aura (NT-MDT) system was
utilised. The measurements were performed in tapping mode using

commercial Si cantilevers with curvature radius of tip better than
10 nm and a spring constant of approximately 26 N/m. Optical
transmission spectra were obtained by a Perkin Elmer High Perfor-
mance Lambda 1050 spectrometer in the interval of wavelengths

 quartz (surface functionalisation).
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Fig. 5. Normalised optical absorption spectra of quartz substrates with as-deposited

on the wavelength scale varies slightly from sample to sample.
This difference is related to a small variation in mean particle sizes
between the series of samples. For quantitative comparison of LSPR
ig. 3. Optical transmittance spectra of virgin quartz and one with surface function-
lised by APTMS (silane groups).

 = 300–750 nm with data interval of 1 nm and acquisition time
f 0.32 s for every measurement. The spectrometer was  used in a
tandard configuration providing beam spot size of about 2 mm in
iameter at the sample location.

. Results and discussion

Silver clusters deposited on a bare quartz substrate were found
o have very low adhesion to the surface leading to removal of most
f them when immersing into solutions. The clusters deposited
n APTMS-functionalised substrates show significantly improved
dhesion. The most probable mechanism is through the forma-
ion of polarisation interaction between the amine groups and NPs.
his additional APTMS layer on the surface decreases the transmit-
ance of the substrates uniformly and only by about 0.5% as can be
een in Fig. 3, i.e. the presence of APTMS does not affect the optical
ensitivity.

A typical AFM image for the clusters as-deposited on the func-

ionalised quartz is shown in Fig. 4a. Since the clusters were
eposited without size-selection, mean sizes slightly vary from
ample to sample. These sizes (diameters) were estimated from the
eight of the particles assuming near-spherical shape and found to

ig. 4. AFM images of substrates (a) with as-deposited clusters, (b) after
ntibody–antigen incubation (classical scheme) on clusters and (c) after
ntigen–antibody incubation (inversed scheme) on clusters.
clusters followed by antibody–antigen incubation scheme (anti-chicken egg albu-
min  antibody followed by chicken egg albumin). Straight base line is shown for one
of the spectra.

be between 8 and 12 nm.  In the experiments, we  use substrates with
very similar cluster coverages which are below one monolayer as
can be seen by example in Fig. 4a. After the functionalisation of sil-
ver NPs with 11-MUA and deposition of antibodies or antigens we
see only a small decrease in the NPs’ coverage, demonstrating good
resistance of the supported clusters when treated wet  chemically.

Optical spectra of the samples with as-deposited clusters
clearly demonstrate the presence of a LSPR absorption band at
� ≈ 390–400 nm in Figs. 5–7 (dash-doted curves). These absorption
spectra are obtained from transmission measurements for partic-
ular samples. The spectrum corresponding to the functionalised
quartz (covered by APTMS) is subtracted from every spectrum to
eliminate contribution of the substrate and emphasise the plas-
monic features. One can see that the position of LSPR maximum
Fig. 6. Normalised optical absorption spectra of quartz substrates with as-deposited
clusters followed by antibody–antigen incubation scheme (anti-chicken egg albu-
min  antibody followed by chicken egg albumin). Albumin concentration is reduced
for six times compared to the case presented in Fig. 5.
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Fig. 7. Normalised optical absorption spectra of quartz substrates with as-deposited
clusters followed by inversed antigen–antibody incubation scheme (chicken egg
albumin followed by anti-chicken egg albumin antibody).

Table 1
Wavelength of LSPR maximum �m and band intensity for spectra in Fig. 5. Relative
error for intensity is calculated using standard deviations for optical measurements
and  found to be ±0.05.

Sample �m (nm) Intensity (rel. un.)

As-deposited Ag clusters 390 2.32
After antibody deposition 426 2.53
After albumin deposition 430 2.77

Table 2
Wavelength of LSPR maximum �m and band intensity for spectra in Fig. 6. Relative
error for intensity is calculated using standard deviations for optical measurements
and  found to be ±0.05.

Sample �m (nm) Intensity (rel. un.)

As-deposited Ag clusters 393 2.61
After antibody deposition 435 3.04
After albumin deposition 439 3.16

Table 3
Wavelength of LSPR maximum �m and band intensity for spectra in Fig. 7. Relative
error for intensity is calculated using standard deviations for optical measurement
and found to be ±0.05.

Sample �m (nm) Intensity (rel. un.)

As-deposited Ag clusters 398 2.15
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After albumin deposition 421 1.60
After antibody deposition 423 1.71

ntensities, a base line is introduced for every spectrum. It is defined
s a straight line tangential to spectral minima in the “blue” and
red” regions. An example is shown in Fig. 5 for one of the spec-
ra. Intensity of plasmon band is measured from this line to the

aximum and the data are presented in Tables 1–3 for Figs. 5–7,
espectively. One can also observe a very weak band at around
00 nm which is tentatively attributed to cluster-cluster interac-
ion. However, it is not essential for the current study and, therefore,
t is not discussed further.

After the deposition of proteins the optical spectra change
ignificantly. The difference between the cases presented in

igs. 5 and 6 and that in Fig. 7 is in sequence of protein deposition. In
he first two cases, the classical antibody–antigen scheme is used.
n the third one, the inversed scheme is applied. The attachment
f the antibodies to Ag NPs causes broadening of the LSPR band,
tors B 212 (2015) 377–381

shift to longer wavelength and increase of the absorption that can
be clearly seen in Tables 1 and 2 as well as in Figs. 5 and 6, respec-
tively. The subsequent deposited of chicken egg albumin leads to
further small red shift of the plasmon band (see Tables 1 and 2). The
change of the band intensity is found to be dependent on the albu-
min  concentration. The albumin/antibody ratio is 2:1 (high) for the
case presented in Fig. 5 and 1:3 (low) for the case shown in Fig. 6.
One can clearly see a larger increase in the band intensity for higher
albumin concentration, thus, being indicative of albumin detection.

11-MUA molecules are attached to silver NPs via the sulfhydryl
group. The other end of the molecule with its carboxyl group is
used to form a covalent amide bond to the antibody, thus, provid-
ing chemisorption of the protein. Strong chemical bonding of the
antibody to the NP changes the dipole characteristics leading to an
enhancement of the SPR absorption as seen in Figs. 5 and 6. The
enhancement may  be caused by the charge transfer between the
NP and 11-MUA, however additional studies of this phenomenon
are required. Chicken egg albumin is smaller compared to the anti-
chicken egg albumin antibody and its subsequent attachment to the
antibody changes the NP–antibody interaction only a little, there-
fore, the spectral shift of the band is small. However, we are able to
see an increase in the band intensity which is found to be concen-
tration dependent, thus, demonstrating the detection of albumin by
the transducers. It is worth noting that due to the relatively small
spectral changes the definition of the absorption intensity may  have
substantial effect on the quantitative evaluation. Among alternative
methods, the defining intensity from the base line, which is chosen
in this work, results in most consistent numbers.

An AFM image of a sample with antibody–antigen deposited in a
classical scheme can be seen in Fig. 4b. The coverage of silver NPs is
slightly decreased compared to the sample with as deposited clus-
ters (see Fig. 4a) but the height and lateral dimensions of the bumps
representing NPs are increased. Taking into account the lateral sizes
of the antibodies (ca. 4 nm)  and supported clusters (8–12 nm), one
can suggest that one or two  antibodies become attached to each
NP, then providing a coupling of albumin molecules. The same ten-
dency of a single molecule coupling to an individual cluster was ear-
lier found for a few different types of proteins immobilised by gold
NPs supported on graphite [12,13]. In the case of several antibod-
ies located on the individual NP the image would represent much
larger bumps and more significant changes in the topography.

For the inversed scheme of protein incubation (the case shown
in Fig. 7), the small sizes of albumin proteins (1–2 nm)  cause non-
selective coating of the substrate. It means that albumin is not only
coupled to the clusters, but also fills the gap between them. This
scenario of massive albumin deposition (with immobilisation on
the clusters and physisorption on the quartz) is confirmed by AFM.
As one can see in Fig. 4c, the clusters are hardly recognised in the
topography. This is related to the fact that chicken egg albumin cov-
ers the entire surface. The sequentially incubated anti-chicken egg
albumin antibodies are consequently situated randomly around the
NPs changing the sample topography dramatically compared to
that with as-deposited clusters. According to the optical spectra
presented in Fig. 7 and corresponding parameters in Table 3, the
intensity of the LSPR band after albumin deposition is decreased,
the band broadens and experiences a red shift due to the change in
dielectric environment for NPs. Sequential deposition of the anti-
body molecules further reduces the transmittance over the whole
interval of wavelengths (entire spectrum in Fig. 7 is shifted up)
but intensity of the LSPR band is affected very little. It can be still
assumed that albumin molecules are attached to antibodies but
since the antibodies are not directly coupled to the nanoparticles

one cannot see any specific change in the plasmon band related to
the presence of albumin. Thus, it can be concluded that no detec-
tion of albumin is possible for the inversed deposition scheme of
proteins.
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Fig. 8. Normalised optical absorption spectra of quartz substrates with as-deposited
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of  Gothenburg in Sweden and the University of Rostock in Germany having dif-
lusters followed by inversed antigen–antibody incubation scheme (lysozyme fol-
owed by anti-chicken egg albumin antibody).

Thus, our study demonstrates that providing an appropriate
eposition and immobilisation protocol is very essential for the
pplication of silver NPs as transducers for optical sensing of partic-
lar proteins, i.e. for providing conditions for a sensitive detection.
o further proof this concept we prepared one more series of sam-
les in which lysozyme was used instead of albumin and incubated
ith the same antibody as before. In other words, we  carried out

he sequential deposition of two proteins which cannot be recog-
ised by each other. The optical spectra are presented in Fig. 8, from
hich one can see that the deposition of lysozyme and then anti-

ody decreases the sample transmittance over the whole interval
f wavelengths and causes the red shift of the plasmon band. It also
esults in slight and unspecific damping of the band intensity, thus,
ndicating no possibility for detection of the antigen similar to the
ase of inversed deposition scheme shown in Fig. 7. Surface topog-
aphy of the sample (not shown) is very similar to that presented
n Fig. 4c.

. Conclusion

Transducers for optical sensing of proteins are prepared using
ilver cluster beam deposition on quartz substrates. The supported
ilver NPs exhibit a specific LSPR band used in the following
etection scheme. The conditions for functionalisation of both the
ubstrate prior to the deposition and cluster surface after that are
ptimised providing considerable NP adhesion to quartz as well as
ormation of chemical bonds coupling the antibodies to NPs. This
oupling enhances the intensity of the LSPR band that is used as an
optical signature” for sensing. Our AFM study of the samples allows
o suggest that there is immobilisation of an antibody on individ-
al NP. Bonding of the antibody to NP then provides a possibility
o attach and detect the antigen of interest, which is chicken egg
lbumin in the current study. It is proven that appropriate prepara-
ion stages and immobilisation schemes are the key issues for the
pplication of silver NPs as transducers for optical sensing of par-
icular proteins. Thus, by applying the correct protocol the assured
rotein detection with high sensitivity can be reached while using

 simple optical spectroscopy method. The developed detection

pproach may  be transferred to other proteins, of which sensing
s of higher practical importance compared to those used in the
urrent experiments.
tors B 212 (2015) 377–381 381
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